الاتجاهات المختلفة لحركة مركز التصنيع باستخدام الحاسب الآلي



بدأت بعض مراكز المعالجة في الظهور والتي تستخدم الحركة الناتجة بطرق أقل تفصيلا. أي أن هذه الآلات تستخدم الحركة الناتجة لعناصر مختلفة تتحرك في اتجاهات مختلفة لتحقيق الحركة على طول X أو Y أو Z ، لكنها تفعل ذلك ضمن تصميمات مركز المعالجة التي تشبه إلى حد كبير الآلات القياسية.

التقليدية مركز التصنيع باستخدام الحاسب الآلي has axis motors that push in one direction or the other along X, Y and Z. In the 1990s, all of us who attend machine tool trade shows learned that this wasn’t the only way to design the machine. A variety of builders brought out "hexapod" and/or "parallel kinematic" machines in which a daddy-longlegs arrangement of linear-motion members used CNC interpolation to achieve precisely the same X-Y-Z motion as a standard machine.

These novel machining centers make for attention-grabbing live demonstrations at trade shows. In fact, these eye-catching machines began to appear at trade shows not long after the use of attractive female models at these shows began to decline—almost as if some different means of capturing attendees’ attention had to be invented. However, real-life users of these machines remain uncommon to say the least. While a machine tool buyer may notice a trade show booth because of the complex motion of one these machines, that buyer is still more likely to spend money on a machine that has a more standard design.

ولكن الآن ، قد يمر تطور مهم دون أن يلاحظه أحد تحت وجود هذه الآلات الأكثر تفصيلا. بعض مراكز التصنيع باستخدام الحاسب الآلي have begun to appear that use the same fundamental idea—resultant motion—in a less elaborate way. That is, these machines use the resultant motion of different elements moving in different directions to achieve the motion along X, Y or Z, but they do so within machining center designs that are considerably more like standard machines.

Here are just two examples. One is the line of "relative motion" machining centers from Olympic Seiki (represented in the United States by Vigor Machinery Company). With these machines, it is not the tool motion or table motion alone that provides the machine’s traverse; it’s the tool and table together. In the X and Z axes, the ballscrew simultaneously moves both table and tool in opposite directions. The feed rate of the tool relative to the part is the sum of the traverse rates of both elements. Ditto for the acceleration. On smaller machines in this line, the resultant acceleration is 2G. In addition to speed, another benefit may be stability. With mated elements moving in symmetry, says the company, the design of this machine favors dynamic balance.

Another machine design taking advantage of resultant motion is the "Genius 500" مركز المعالجة الأفقية from Cross Hüller. On this machine, the X-axis motion—that is, the side-to-side motion—comes from elements that move up and down along the Y direction. The mechanism for this is an inverted V-shaped coupler that carries the spindle. This inverted V straddles between two sets of linear motors that run up and down. When the linear motors move together at the same speed, the result is pure Y-axis motion. But when the linear motors move differently, the difference causes the coupler to pivot, providing the motion in X.

نتيجة لذلك ، ليست هناك حاجة لمحرك لدفع المحور X على هذا الجهاز. وهنا تكمن فائدة التصميم. سواء كانت الحركة X أو Y ، فإن قوة محركات المحور تسير على طول اتجاه الجاذبية ، حيث تكون الماكينة مدعومة جيدا (بواسطة الأرضية). وبالتالي يمكن للآلة تحريك الأداة بسرعة في جميع أنحاء المستوى X-Y ، مع عدم وجود أي من حركة محركات المحور التي تنتج قوى جانبية مباشرة.
 

شارك هذا المنشور: